Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Ieee Access ; 10:10176-10190, 2022.
Article in English | Web of Science | ID: covidwho-2328268

ABSTRACT

Air pollution, especially the continual increase in atmospheric particulate matter (PM), is a global environmental challenge. To reduce the PM concentration, a remarkable amount of machine learning-based research has been proposed. However, increasing the accuracy of the predictions and providing clear interpretations of the predictions are challenging. In particular, no studies have addressed models that predict and interpret PM before and during the COVID-19 pandemic. In this paper, we present a two-step predictive and explainable model to obtain insights into reducing PM. We first use attentive multi-task learning to predict the air quality of cities. To accurately predict the concentration of particles with sizes of similar to 10 mu m or similar to 2.5 mu m (PM10 and PM2.5, respectively), we demonstrate a performance difference between single-task and multi-task learning, as well as among the state-of-the art methods. The proposed attentive model with multi-task learning outperformed the others in terms of accuracy performance. We then used Shapley additive explanations, a representative explainable artificial intelligence framework, to interpret and determine the significance of features for predicting PM10 and PM2.5. We demonstrated the superiority of the proposed approach in predicting and explaining both PM10 and PM2.5 concentrations, and observed a statistically significant difference in air pollution before and during the COVID-19 pandemic.

2.
Front Public Health ; 11: 1150095, 2023.
Article in English | MEDLINE | ID: covidwho-2320908

ABSTRACT

Background: The global COVID-19 pandemic is still ongoing, and cross-country and cross-period variation in COVID-19 age-adjusted case fatality rates (CFRs) has not been clarified. Here, we aimed to identify the country-specific effects of booster vaccination and other features that may affect heterogeneity in age-adjusted CFRs with a worldwide scope, and to predict the benefit of increasing booster vaccination rate on future CFR. Method: Cross-temporal and cross-country variations in CFR were identified in 32 countries using the latest available database, with multi-feature (vaccination coverage, demographic characteristics, disease burden, behavioral risks, environmental risks, health services and trust) using Extreme Gradient Boosting (XGBoost) algorithm and SHapley Additive exPlanations (SHAP). After that, country-specific risk features that affect age-adjusted CFRs were identified. The benefit of booster on age-adjusted CFR was simulated by increasing booster vaccination by 1-30% in each country. Results: Overall COVID-19 age-adjusted CFRs across 32 countries ranged from 110 deaths per 100,000 cases to 5,112 deaths per 100,000 cases from February 4, 2020 to Jan 31, 2022, which were divided into countries with age-adjusted CFRs higher than the crude CFRs and countries with age-adjusted CFRs lower than the crude CFRs (n = 9 and n = 23) when compared with the crude CFR. The effect of booster vaccination on age-adjusted CFRs becomes more important from Alpha to Omicron period (importance scores: 0.03-0.23). The Omicron period model showed that the key risk factors for countries with higher age-adjusted CFR than crude CFR are low GDP per capita and low booster vaccination rates, while the key risk factors for countries with higher age-adjusted CFR than crude CFR were high dietary risks and low physical activity. Increasing booster vaccination rates by 7% would reduce CFRs in all countries with age-adjusted CFRs higher than the crude CFRs. Conclusion: Booster vaccination still plays an important role in reducing age-adjusted CFRs, while there are multidimensional concurrent risk factors and precise joint intervention strategies and preparations based on country-specific risks are also essential.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , Risk Factors , Cost of Illness , Vaccination
3.
Decision Analytics Journal ; : 100246, 2023.
Article in English | ScienceDirect | ID: covidwho-2309260

ABSTRACT

COVID-19 is a respiratory disease caused by the SARS-CoV-2 contagion, severely disrupted the healthcare infrastructure. Various countries have developed COVID-19 vaccines that have effectively prevented the severe symptoms caused by the virus to a certain extent. However, a small section of people continues to perish. Artificial intelligence advances have revolutionized healthcare diagnosis and prognosis infrastructure. In this study, we predict the severity of COVID-19 using heterogenous Machine Learning and Deep Learning algorithms by considering clinical markers, vital signs, and other critical factors. This study extensively reviews various classifier architectures to predict the COVID-19 severity. We built and evaluated multiple pipelines entailing combinations of five state-of-the-art data-balancing techniques (Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic, Borderline SMOTE, SMOTE with Tomek links, and SMOTE with Edited Nearest Neighbor (ENN)) and twelve heterogeneous classifiers such as Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors, Naïve Bayes, Xgboost, Extratrees, Adaboost, Light GBM, Catboost, and 1-D Convolution Neural Network. The best-performing pipeline consists of Random Forest trained on Borderline SMOTE balanced data that produced the highest recall of 83%. We deployed Explainable Artificial Intelligence tools such as Shapley Additive Explanations and Local Interpretable Model-agnostic Explanations, ELI5, Qlattice, Anchor, and Feature Importance to demystify complex tree-based ensemble models. These tools provide valuable insights into the significance of critical features in the severity prediction of a COVID-19 patient. It was observed that changes in respiratory rate, blood pressure, lactate, and calcium values were the primary contributors to the increase in severity of a COVID-19 patient. This architecture aims to be an explainable decision-support triaging system for medical professionals in countries lacking advanced medical technology and infrastructure to reduce fatalities.

4.
Ann Oper Res ; : 1-28, 2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2306025

ABSTRACT

Evaluating and understanding the financial impacts of COVID-19 has emerged as an urgent research agenda. Nevertheless, the impacts of government interventions on stock markets remain poorly understood. This study explores, for the first time, the impact of COVID-19 related government intervention policies on different stock market sectors using explainable machine learning-based prediction models. The empirical findings suggest that the LightGBM model provides excellent prediction accuracy while preserving computationally efficient and easy explainability of the model. We also find that COVID-19 government interventions are better predictors of stock market volatility than stock market returns. We further show that the observed effects of government intervention on the volatility and returns of ten stock market sectors are heterogeneous and asymmetrical. Our findings have important implications for policymakers and investors in terms of promoting balance and sustaining prosperity across industry sectors through government interventions.

5.
1st International Conference on Advancements in Interdisciplinary Research, AIR 2022 ; 1738 CCIS:133-144, 2022.
Article in English | Scopus | ID: covidwho-2275612

ABSTRACT

This work proposes a novel Deep Learning-based model to forecast the total number of confirmed COVID-19 cases in four of the worst-hit states of India. Along with statewide restrictions and public holidays, a novel parameter is introduced for training the proposed model, which considers the Alpha, Beta, Delta, and Omicron variants and the degree of their prevalence in each of the four states. Recurrent Neural Network-based Long-Short Term Memory is applied to the custom dataset, with the lowest Mean Absolute Percentage Error being 0.77% for the state of Maharashtra. SHapley Additive exPlanations values are used to examine the significance of the various parameters. The proposed model can be applied to other countries and can include newer variants of the novel coronavirus discovered in the future. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

6.
Journal of Building Engineering ; 65, 2023.
Article in English | Scopus | ID: covidwho-2245648

ABSTRACT

Passengers significantly affect airport terminal energy consumption and indoor environmental quality. Accurate passenger forecasting provides important insights for airport terminals to optimize their operation and management. However, the COVID-19 pandemic has greatly increased the uncertainty in airport passenger since 2020. There are insufficient studies to investigate which pandemic-related variables should be considered in forecasting airport passenger trends under the impact of COVID-19 outbreaks. In this study, the interrelationship between COVID-19 pandemic trends and passenger traffic at a major airport terminal in China was analyzed on a day-by-day basis. During COVID-19 outbreaks, three stages of passenger change were identified and characterized, i.e., the decline stage, the stabilization stage, and the recovery stage. A typical "sudden drop and slow recovery” pattern of passenger traffic was identified. A LightGBM model including pandemic variables was developed to forecast short-term daily passenger traffic at the airport terminal. The SHapley Additive exPlanations (SHAP) values was used to quantify the contribution of input pandemic variables. Results indicated the inclusion of pandemic variables reduced the model error by 27.7% compared to a baseline model. The cumulative numbers of COVID-19 cases in previous weeks were found to be stronger predictors of future passenger traffic than daily COVID-19 cases in the most recent week. In addition, the impact of pandemic control policies and passengers' travel behavior was discussed. Our empirical findings provide important implications for airport terminal operations in response to the on-going COVID-19 pandemic. © 2022

7.
Environ Pollut ; : 120798, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2246197

ABSTRACT

Ground-level ozone (O3) formation depends on meteorology, precursor emissions, and atmospheric chemistry. Understanding the key drivers behind the O3 formation and developing an accurate and efficient method for timely assessing the O3-VOCs-NOx relationships applicable in different O3 pollution events are essential. Here, we developed a novel machine learning ensemble model coupled with a Shapley additive explanation algorithm to predict the O3 formation regime and derive O3 formation sensitivity curves. The algorithm was tested for O3 events during the COVID-19 lockdown, a sandstorm event, and a heavy O3 pollution episode (maximum hourly O3 concentration >200 µg/m3) from 2019 to 2021. We show that increasing O3 concentrations during the COVID-19 lockdown and the heavy O3 pollution event were mainly caused by the photochemistry subject to local air quality and meteorological conditions. Influenced by the sandstorm weather, low O3 levels were mainly attributable to weak sunlight and low precursor levels. O3 formation sensitivity curves demonstrate that O3 formation in the study area was in a VOCs-sensitive regime. The VOCs-specific O3 sensitivity curves can also help make hybrid and timely strategies for O3 abatement. The results demonstrate that machine learning driven by observational data has the potential to be a very useful tool in predicting and interpreting O3 formation.

8.
2022 Ieee International Conference on Acoustics, Speech and Signal Processing (Icassp) ; : 1381-1385, 2022.
Article in English | Web of Science | ID: covidwho-2191813

ABSTRACT

A long-standing challenge of deep learning models involves how to handle noisy labels, especially in applications where human lives are at stake. Adoption of the data Shapley Value (SV), a cooperative game-theoretic approach, is an intelligent valuation solution to tackle the issue of noisy labels. Data SV can be used together with a learning model and an evaluation metric to validate each training point's contribution to the model's performance. The SV of a data point, however, is not unique and depends on the learning model, the evaluation metric, and other data points collaborating in the training game. However, effects of utilizing different evaluation metrics for computation of the SV, detecting the noisy labels, and measuring the data points' importance has not yet been thoroughly investigated. In this context, we performed a series of comparative analyses to assess SV's capabilities to detect noisy input labels when measured by different evaluation metrics. Our experiments on COVID-19-infected of CT images illustrate that although the data SV can effectively identify noisy labels, adoption of different evaluation metric can significantly influence its ability to identify noisy labels from different data classes. Specifically, we demonstrate that the SV greatly depends on the associated evaluation metric.

9.
Heliyon ; 8(9): e10708, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2179003

ABSTRACT

Social restrictions, such as social distancing and self-isolation, imposed owing to the coronavirus disease-19 (COVID-19) pandemic have resulted in a decreased demand of commodities and manufactured products. However, the factors influencing sales in commercial districts in the pre- and post-COVID-19 periods have not yet been fully understood. Thus, this study uses machine learning techniques to identify the changes in important geographical factors among both periods that have affected sales in commercial alleys. It was discovered that, in the post-COVID-19 period, the number of pharmacies, age groups of the working population, average monthly income, and number of families living in apartments priced higher than $600k in the catchment areas had relatively high importance after COVID-19 in the prediction of a high level of sales. Moreover, the percentage of deciduous forests appeared to be a important factor in the post-COVID-19 period. As the average monthly income and worker population in their 60s and numbers of pharmacies and banks increased after the pandemic, sales in commercial alleys also increased. The survival of commercial alleys has become a critical social problem in the post-COVID-19 era; therefore, this study is meaningful in that it suggests a policy direction that could contribute to the revitalization of commercial alley sales in the future and boost the local economy.

10.
Cell Biochem Funct ; 41(1): 112-127, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2157718

ABSTRACT

The expeditious transmission of the severe acute respiratory coronavirus 2 (SARS-CoV-2), a strain of COVID-19, crumbled the global economic strength and caused a veritable collapse in health infrastructure. The molecular modeling of the novel coronavirus research sounds promising and equips more evidence about the pragmatic therapeutic options. This article proposes a machine-learning framework for identifying potential COVID-19 transcriptomic signatures. The transcriptomics data contains immune-related genes collected from multiple tissues (blood, nasal, and buccal) with accession number: GSE183071. Extensive bioinformatics work was carried out to identify the potential candidate markers, including differential expression analysis, protein interactions, gene ontology, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment studies. The overlapping investigation found SERPING1, the gene that encodes a glycosylated plasma protein C1-INH, in all three datasets. Furthermore, the immuno-informatics study was conducted on the C1-INH protein. 5DU3, the protein identifier of C1-INH, was fetched to identify the antigenicity, major histocompatibility (MHC) Class I and II binding epitopes, allergenicity, toxicity, and immunogenicity. The screening of peptides satisfying the vaccine-design criteria based on the metrics mentioned above is performed. The drug-gene interaction study reported that Rhucin is strongly associated with SERPING1. HSIC-Lasso (Hilbert-Schmidt independence criterion-least absolute shrinkage and selection operator), a model-free biomarker selection technique, was employed to identify the genes having a nonlinear relationship with the target class. The gene subset is trained with supervised machine learning models by a leave-one-out cross-validation method. Explainable artificial intelligence techniques perform the model interpretation analysis.


Subject(s)
Artificial Intelligence , COVID-19 Drug Treatment , COVID-19 , Complement C1 Inhibitor Protein , SARS-CoV-2 , Humans , Complement C1 Inhibitor Protein/genetics , Computational Biology , COVID-19/genetics , COVID-19/immunology , SARS-CoV-2/drug effects , Gene Expression Profiling , Machine Learning , Immunity/genetics , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology
11.
Smart Health (Amst) ; 26: 100323, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2086730

ABSTRACT

The large amount of data generated during the COVID-19 pandemic requires advanced tools for the long-term prediction of risk factors associated with COVID-19 mortality with higher accuracy. Machine learning (ML) methods directly address this topic and are essential tools to guide public health interventions. Here, we used ML to investigate the importance of demographic and clinical variables on COVID-19 mortality. We also analyzed how comorbidity networks are structured according to age groups. We conducted a retrospective study of COVID-19 mortality with hospitalized patients from Londrina, Parana, Brazil, registered in the database for severe acute respiratory infections (SIVEP-Gripe), from January 2021 to February 2022. We tested four ML models to predict the COVID-19 outcome: Logistic Regression, Support Vector Machine, Random Forest, and XGBoost. We also constructed a comorbidity network to investigate the impact of co-occurring comorbidities on COVID-19 mortality. Our study comprised 8358 hospitalized patients, of whom 2792 (33.40%) died. The XGBoost model achieved excellent performance (ROC-AUC = 0.90). Both permutation method and SHAP values highlighted the importance of age, ventilatory support status, and intensive care unit admission as key features in predicting COVID-19 outcomes. The comorbidity networks for old deceased patients are denser than those for young patients. In addition, the co-occurrence of heart disease and diabetes may be the most important combination to predict COVID-19 mortality, regardless of age and sex. This work presents a valuable combination of machine learning and comorbidity network analysis to predict COVID-19 outcomes. Reliable evidence on this topic is crucial for guiding the post-pandemic response and assisting in COVID-19 care planning and provision.

12.
J Med Internet Res ; 24(8): e38082, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-2022390

ABSTRACT

BACKGROUND: Heart failure (HF) is a common disease and a major public health problem. HF mortality prediction is critical for developing individualized prevention and treatment plans. However, due to their lack of interpretability, most HF mortality prediction models have not yet reached clinical practice. OBJECTIVE: We aimed to develop an interpretable model to predict the mortality risk for patients with HF in intensive care units (ICUs) and used the SHapley Additive exPlanation (SHAP) method to explain the extreme gradient boosting (XGBoost) model and explore prognostic factors for HF. METHODS: In this retrospective cohort study, we achieved model development and performance comparison on the eICU Collaborative Research Database (eICU-CRD). We extracted data during the first 24 hours of each ICU admission, and the data set was randomly divided, with 70% used for model training and 30% used for model validation. The prediction performance of the XGBoost model was compared with three other machine learning models by the area under the curve. We used the SHAP method to explain the XGBoost model. RESULTS: A total of 2798 eligible patients with HF were included in the final cohort for this study. The observed in-hospital mortality of patients with HF was 9.97%. Comparatively, the XGBoost model had the highest predictive performance among four models with an area under the curve (AUC) of 0.824 (95% CI 0.7766-0.8708), whereas support vector machine had the poorest generalization ability (AUC=0.701, 95% CI 0.6433-0.7582). The decision curve showed that the net benefit of the XGBoost model surpassed those of other machine learning models at 10%~28% threshold probabilities. The SHAP method reveals the top 20 predictors of HF according to the importance ranking, and the average of the blood urea nitrogen was recognized as the most important predictor variable. CONCLUSIONS: The interpretable predictive model helps physicians more accurately predict the mortality risk in ICU patients with HF, and therefore, provides better treatment plans and optimal resource allocation for their patients. In addition, the interpretable framework can increase the transparency of the model and facilitate understanding the reliability of the predictive model for the physicians.


Subject(s)
Heart Failure , Machine Learning , Cohort Studies , Heart Failure/therapy , Humans , Intensive Care Units , Reproducibility of Results , Retrospective Studies
13.
7th IEEE International conference for Convergence in Technology, I2CT 2022 ; 2022.
Article in English | Scopus | ID: covidwho-1992603

ABSTRACT

This work proposed a unified approach to increase the explainability of the predictions made by Convolution Neural Networks (CNNs) on medical images using currently available Explainable Artificial Intelligent (XAI) techniques. This method in-cooperates multiple techniques such as LISA aka Local Interpretable Model Agnostic Explanations (LIME), integrated gradients, Anchors and Shapley Additive Explanations (SHAP) which is Shapley values-based approach to provide explanations for the predictions provided by Blackbox models. This unified method increases the confidence in the black-box model's decision to be employed in crucial applications under the supervision of human specialists. In this work, a Chest X-ray (CXR) classification model for identifying Covid-19 patients is trained using transfer learning to illustrate the applicability of XAI techniques and the unified method (LISA) to explain model predictions. To derive predictions, an image-net based Inception V2 model is utilized as the transfer learning model. © 2022 IEEE.

14.
Foods ; 11(10)2022 May 21.
Article in English | MEDLINE | ID: covidwho-1953157

ABSTRACT

During the COVID-19 crisis, customers' preference in having food delivered to their doorstep instead of waiting in a restaurant has propelled the growth of food delivery services (FDSs). With all restaurants going online and bringing FDSs onboard, such as UberEATS, Menulog or Deliveroo, customer reviews on online platforms have become an important source of information about the company's performance. FDS organisations aim to gather complaints from customer feedback and effectively use the data to determine the areas for improvement to enhance customer satisfaction. This work aimed to review machine learning (ML) and deep learning (DL) models and explainable artificial intelligence (XAI) methods to predict customer sentiments in the FDS domain. A literature review revealed the wide usage of lexicon-based and ML techniques for predicting sentiments through customer reviews in FDS. However, limited studies applying DL techniques were found due to the lack of the model interpretability and explainability of the decisions made. The key findings of this systematic review are as follows: 77% of the models are non-interpretable in nature, and organisations can argue for the explainability and trust in the system. DL models in other domains perform well in terms of accuracy but lack explainability, which can be achieved with XAI implementation. Future research should focus on implementing DL models for sentiment analysis in the FDS domain and incorporating XAI techniques to bring out the explainability of the models.

15.
Foods ; 11(14)2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1928524

ABSTRACT

The demand for food delivery services (FDSs) during the COVID-19 crisis has been fuelled by consumers who prefer to order meals online and have it delivered to their door than to wait at a restaurant. Since many restaurants moved online and joined FDSs such as Uber Eats, Menulog, and Deliveroo, customer reviews on internet platforms have become a valuable source of information about a company's performance. FDS organisations strive to collect customer complaints and effectively utilise the information to identify improvements needed to enhance customer satisfaction. However, only a few customer opinions are addressed because of the large amount of customer feedback data and lack of customer service consultants. Organisations can use artificial intelligence (AI) instead of relying on customer service experts and find solutions on their own to save money as opposed to reading each review. Based on the literature, deep learning (DL) methods have shown remarkable results in obtaining better accuracy when working with large datasets in other domains, but lack explainability in their model. Rapid research on explainable AI (XAI) to explain predictions made by opaque models looks promising but remains to be explored in the FDS domain. This study conducted a sentiment analysis by comparing simple and hybrid DL techniques (LSTM, Bi-LSTM, Bi-GRU-LSTM-CNN) in the FDS domain and explained the predictions using SHapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME). The DL models were trained and tested on the customer review dataset extracted from the ProductReview website. Results showed that the LSTM, Bi-LSTM and Bi-GRU-LSTM-CNN models achieved an accuracy of 96.07%, 95.85% and 96.33%, respectively. The model should exhibit fewer false negatives because FDS organisations aim to identify and address each and every customer complaint. The LSTM model was chosen over the other two DL models, Bi-LSTM and Bi-GRU-LSTM-CNN, due to its lower rate of false negatives. XAI techniques, such as SHAP and LIME, revealed the feature contribution of the words used towards positive and negative sentiments, which were used to validate the model.

16.
Mayo Clin Proc Innov Qual Outcomes ; 6(5): 409-419, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1914806

ABSTRACT

Objective: To assess the proportion of indeterminate QuantiFERON-TB Gold Plus (QFT-Plus) results in patients admitted for severe coronavirus disease 2019 (COVID-19) pneumonia and evaluate the factors associated with indeterminate QFT-Plus results. Patients and Methods: Data on COVID-19 admissions at Mayo Clinic in Florida were extracted between October 13, 2020, and September 20, 2021, and data from a prepandemic cohort were extracted between October 13, 2018, and September 20, 2019. A secondary analysis of the COVID-19 cohort was performed using gradient boosting modeling to generate variable importance and SHapley Additive exPlanations plots. Results: Our findings demonstrated more indeterminate QFT-Plus test results in patients hospitalized for severe COVID-19 infection than in patients without COVID-19 (139 of 495, 28.1%). The factors associated with indeterminate QFT-Plus test results included elevated levels of C-reactive protein, ferritin, lactate dehydrogenase and interleukin-6 and included lower levels of leukocyte, lymphocyte, and platelet counts. Conclusion: The patients with severe COVID-19 had a higher likelihood of indeterminate QFT-Plus results, which were associated with elevated levels of inflammatory markers consistent with severe infection. Interferon-gamma release assay screening tests are likely confounded by COVID-19 infection itself, limiting the screening ability for latent tuberculosis infection reactivation. Indeterminate QFT-Plus results may also require follow-up QFT-Plus testing after patient recovery from COVID-19, increasing the cost and complexity of medical decision making and management. Additional risk assessments may be needed in this patient population for screening for latent tuberculosis infection in patients with severe COVID-19.

17.
Comput Biol Med ; 146: 105540, 2022 07.
Article in English | MEDLINE | ID: covidwho-1814280

ABSTRACT

OBJECTIVE: Studies showed that many COVID-19 survivors develop sub-clinical to clinical heart damage, even if subjects did not have underlying heart disease before COVID. Since Electrocardiogram (ECG) is a reliable technique for cardiovascular disease diagnosis, this study analyzes the 12-lead ECG recordings of healthy and post-COVID (COVID-recovered) subjects to ascertain ECG changes after suffering from COVID-19. METHOD: We propose a shallow 1-D convolutional neural network (CNN) deep learning architecture, namely ECG-iCOVIDNet, to distinguish ECG data of post-COVID subjects and healthy subjects. Further, we employed ShAP technique to interpret ECG segments that are highlighted by the CNN model for the classification of ECG recordings into healthy and post-COVID subjects. RESULTS: ECG data of 427 healthy and 105 post-COVID subjects were analyzed. Results show that the proposed ECG-iCOVIDNet model could classify the ECG recordings of healthy and post-COVID subjects better than the state-of-the-art deep learning models. The proposed model yields an F1-score of 100%. CONCLUSION: So far, we have not come across any other study with an in-depth ECG signal analysis of the COVID-recovered subjects. In this study, it is shown that the shallow ECG-iCOVIDNet CNN model performed good for distinguishing ECG signals of COVID-recovered subjects from those of healthy subjects. In line with the literature, this study confirms changes in the ECG signals of COVID-recovered patients that could be captured by the proposed CNN model. Successful deployment of such systems can help the doctors identify the changes in the ECG of the post-COVID subjects on time that can save many lives.


Subject(s)
COVID-19 , Signal Processing, Computer-Assisted , Electrocardiography/methods , Humans , Neural Networks, Computer
18.
Energies ; 15(6):2066, 2022.
Article in English | ProQuest Central | ID: covidwho-1760462

ABSTRACT

This study discusses how to facilitate the barrier-free circulation of energy big data among multiple entities and how to balance the energy big data ecosystem under government supervision using dynamic game theory. First, we define the related concepts and summarize the recent studies and developments of energy big data. Second, evolutionary game theory is applied to examine the interaction mechanism of complex behaviors between power grid enterprises and third-party enterprises in the energy big data ecosystem, with and without the supervision of government. Finally, a sensitivity analysis is conducted on the main factors affecting co-opetition, such as the initial participation willingness, distribution of benefits, free-riding behavior, government funding, and punitive liquidated damages. The results show that both government supervision measures and the participants’ own will have an impact on the stable evolution of the energy big data ecosystem in the dynamic evolution process, and the effect of parameter changes on the evolution is more significant under the state of no government supervision. In addition, the effectiveness of the developed model in this work is verified by simulated analysis. The present model can provide an important reference for overall planning and efficient operation of the energy big data ecosystem.

19.
21st European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021 ; 1525 CCIS:408-422, 2021.
Article in English | Scopus | ID: covidwho-1750522

ABSTRACT

Subgroup discovery is a data mining technique that attempts to find interesting relationships between different instances in a dataset with respect to a property of interest. Cluster analysis is a popular method for extracting homogeneous groups from a heterogeneous population, however, it often yields results that are challenging to interpret and action. In this work, we propose a novel, multi-step clustering methodology based on SHAP (SHapley Additive exPlanation) values and dimensionality reduction, for the purpose of subgroup discovery. Our method produces well-separated clusters that can be readily differentiated by simple decision rules, to yield interpretable subgroups in relation to a target variable. We illustrate our approach using self-reported COVID-19 symptom data across 2,479 participants who tested positive for COVID-19, resulting in the identification of 16 distinct symptom presentations. Future work will investigate common demographic and clinical features exhibited by each cluster cohort, and map clusters to outcomes to better understand the clinical presentation, risk factors and prognosis in COVID-19, as a timely and impactful application of this methodology. © 2021, Springer Nature Switzerland AG.

20.
33rd Chinese Control and Decision Conference, CCDC 2021 ; : 4190-4195, 2021.
Article in English | Scopus | ID: covidwho-1722898

ABSTRACT

E-commerce is perceived a powerful engine for sustainable economic development in the post COVID-19 pandemic. For the agricultural food industry, e-commerce platforms have become a new sales channel for agricultural products. Yet little is known about the rice supply chain on e-commerce platforms. Thus, this study: 1) Synthesizes the behaviors that rice supply chain stakeholders will take to maximize benefits. 2) Based on the impacts of cooperation cost, default risk, response speed and logistics services in the rice supply chain cooperation, an analysis framework is proposed to clarify how to make these decisions. 3) Offers specific examples to illustrate the decision-making process of using Shapley value distribution method to distribute the benefits of the rice supply chain fairly. The results show that: When the benefits of cooperation are greater cooperation will occur. Alliance. The improved distribution plan based on traditional Shapley value distribution will contributes to a stable and cooperative supply chain alliance. © 2021 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL